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Abstract. The dynamics of opinion formation based on a majority rule model is studied in a network with
the social hierarchical structure as one of its limits. The exit probability is found to change sensitively with
the number of nodes in the system, but not with the parameter of homophyly characterizing the network
structure. The consensus time is found to be a result of non-trivial interplay between the network structure
characterized by the parameter of homophyly and the initial bias in opinion. For unbiased initial opinion,
a common consensus is easier to be reached in a random network than a highly structured hierarchical
network and it follows the behavior of the length of shortest paths. For biased initial opinion, a common
consensus is easier to be reached in a hierarchical network, as the local majority opinion of the groups may

take on the biased opinions and hence be the same.

PACS. 87.23.Ge Dynamics of social systems — 89.75.Hc Networks and genealogical trees — 02.50.Le

Decision theory and game theory

1 Introduction

The physics of networks has attracted much interest in
recent years not only among physicists, but also among
scientists in other disciplines [1-3]. The structures of net-
works, dynamical processes on networks, and the inter-
play between the structural and the dynamical properties
are the important questions. Structurally, it was found
that many real-world networks exhibit the small-world
phenomena [4]. Various dynamical processes have been
studied on small-world structures [5-7]. The physics of
dynamical processes on networks is particularly rich. In
these processes, the nodes in a network may be taken to
be individuals and the links may be taken to be paths
through which information flows. These dynamical pro-
cesses may be epidemics in a population, cultural assimila-
tion, opinion formation, mailing, voting, or decision mak-
ing in a competing environment for limited resources. A
good review on dynamical processes in complex networks
has been given recently by Bocaletti et al. [8]. Here, we
study the dynamics of opinion formation in a network that
interpolates random networks and social hierarchical net-
works.

The statistical physics of social dynamics has become
an active area of research [9]. Among the interesting prob-
lems is that of opinion formation. One of the prototypical
models of opinion formation is based on the simple major-
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ity rule [10]. The nodes in a system can take on two pos-
sible states, say +1 and —1. The majority rule amounts
to an updating scheme in which a node and its connected
neighbors take on the state of the local majority. Slightly
rephrased, the model is closely related to magnetic models
in statistical physics. The probability of reaching a con-
sensus, e.g., +1, for a given initial bias in opinion and
the time to reach a consensus have been studied in the
mean field limit and regular lattices [11,12]. Recently, we
have studied the model in a network in which a number of
shortcuts between nodes are randomly added into an un-
derlying regular lattice [13]. Newman and Watts showed
that such a network can be tuned from a regular lattice
to a small-world [14], and the length of shortest paths
changes from a linear dependence on the network size to a
logarithmic dependence when a small fraction of shortcuts
are added. The dynamics of opinion formation was found
to depend sensitively on the length of shortest paths in
this Newman-Watts network model. Besides the major-
ity rule, another model of opinion formation is the voter
model, which has been implemented on lattices [15-17]
and on complex networks [18]. In this model, a node is
updated by taking on the opinion of a randomly selected
neighbor [19]. A key difference is that the voter model con-
siders only pairwise interactions, while the majority rule
considers the interactions among the nodes in a group.

To understand the dynamics of opinion formation bet-
ter, one needs a more appropriate network that shows
the characteristics of social networks. Besides having
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small length of shortest paths and high clustering coef-
ficient, both typical of small-world behavior, an impor-
tant character of social networks is its “searchability”.
Kleinberg [20,21] pointed out that the well-known small-
world experiments of Milgram [22-24] demonstrated not
only that the existence of short paths between randomly
chosen individuals in a population, but also the property
that individuals could find each other through such paths
by using only local information about the network. Thus,
in addition to being small-world, social networks are also
searchable [25]. Kleinberg [21] also proved that while short
paths do exist in networks constructed by rewiring or
adding links to an underlying regular lattice [5,14], the
nodes cannot find each other readily using methods of
local search. Motivated by the observation that individu-
als in a population are usually classified into hierarchical
structures, Watts et al. [26] proposed a network construc-
tion that interpolates random networks and social hierar-
chical networks that are searchable. The construction is,
obviously, more appropriate for studying the dynamics of
opinion formation.

In the present work, we study the dynamics of achiev-
ing a uniform opinion in hierarchical social networks. In
Section 2, the construction of the hierarchical network and
the opinion formation model based on the majority rule
are introduced. The behavior of the averaged length of
shortest paths as a function of the parameter of homo-
phyly is discussed, as it is an important parameter in
discussing the opinion formation results that follow. In
Section 3, results on how the exit probability and the
consensus time depend on the structure of the network
and initial bias in opinion are presented. The results are
discussed within the context of the interplay between the
network structure and the initial bias. A summary is given
in Section 4.

2 Hierarchical networks and opinion
formation model

We study opinion formation in a model of social networks.
First, we discuss the network construction proposed by
Watts et al. Motivated by the observation that entities in
a society are generally grouped in a hierarchical fashion,
Watts et al. [26] proposed a model of constructing a hi-
erarchical social networks. Figure 1 shows schematically a
hierarchical structure in partitioning a population. It has
been argued that many social systems of IV individuals are
naturally divided into a layered structure. The top layer
represents the whole population of N individuals. In a hi-
erarchy, these individuals are then divided into b groups.
Each group is further divided into b subgroups, and the
process of division is continued until each individual be-
longs to a group with some functional group size g. After
L —1 divisions, the structure has L layers. The total num-
ber of individuals is given by N = (g)b*~!, where (g) is
the mean group size of the lowest layer. Typically, (g) is
of the order of unity or ten, as evidence from the typi-
cal size of a section of specific functionality, e.g., auditing,
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Fig. 1. Individuals in a population can typically be classified
into several hierarchies. The grouping of individuals in one of
these hierarchies is shown schematically. The hierarchy has a
branching ratio b = 2, total number of layers L = 3, and mean
group size (g) = 4 at the lowest layer. Two individuals have
different social distances in different hierarchies.

marketing, and accounting, in a company, and the typical
size of research groups in academic institutions.

The notion of social distance [26] plays a key role in
studying problems such as epidemics, spread of rumors,
and opinion formation. A person is more likely to affect
a close friend or to be influenced by a close friend. The
social distance provides a measure of this “closeness”. In
a hierarchy, social distance can be conveniently defined.
The social distance x;; between two individuals ¢ and j
in a hierarchy is defined as the number of levels to reach
their common ancestor in the hierarchy, with the lowest
layer set to be level 1. Practically, it means to search up-
wards in the hierarchy until ¢ and j meet. The maximum
social distance between two individuals is thus L and the
distance between any pair of individuals belonging to the
same group is 1. Take the hierarchy in Figure 1 as an ex-
ample, we have x;; = 3. The social distance thus measures
the similarity between individuals, and the probability of
acquaintance between individuals ¢ and j increases with
decreasing social distance.

Another typical feature of social networks is that a
population can be characterized by a number H of hier-
archies [26]. A hierarchical structure can be constructed
by considering one attribute of identity, e.g., geographi-
cal location, types of employment, religious beliefs, and
research interests. For H > 1, a node ¢ can be close to a
node j in one hierarchy and to another node %k in another
hierarchy, while j and k may be far apart in both hier-
archies, i.e., nodes ¢ and j have different social distances
in different hierarchies. An example among physicists is
that you know your colleague in the office next door and
your collaborator in another continent well, but they may
not know each other. This feature helps in the connections
between nodes in the system.

Watts et al. [26] introduced a construction that gives
the hierarchical structure of social networks as one of its
limits. The algorithm goes as follows. Consider a system
with N nodes that can be characterized by H hierarchies.
Before any links are established, the N nodes are dis-
tributed randomly into the groups in the lowest layers in
each of the H hierarchies, for given values of (g), b, and L.
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The N nodes are, in general, distributed in different ways
into the lowest layer of each hierarchy. Note that this ini-
tial configuration is mot the resultant network. It simply
serves to define the social distance x;; between two nodes
in each of the hierarchies. The links connecting the nodes
are established by [26]: (i) randomly pick a hierarchy; (ii)
randomly pick a node i; (iii) decide on the length of the
link to be formed probabilistically, using the probability
P(z) = Cexp(—ax) for a link with another node that is
a social distance z (z = 1,..., L) away from node i, with
C being a normalization constant and a being a tunable
parameter; (iv) collect all the nodes that are of the desired
distance from node 7 in the chosen hierarchy and randomly
pick one node j to establish a link; (v) repeat the process
until a desired value of mean degree (k) is achieved. Typ-
ically, we choose (k) = (g) — 1. Here, the parameter a is a
parameter of homophyly [26]. For one hierarchy H = 1, it
is easy to see that short links are favored for a > 1 and
hence the resultant network is of the structure shown in
Figure 1. For a = — Inb, any two nodes have equal chance
to be linked and a random network results. In the presence
of several hierarchies, a key feature is that while nodes
and 7 may have a very long social distance in one hier-
archy, they could reach each other easily if ¢ and &k (and
j and k) have short social distance in the other hierar-
chies. This multi-hierarchy nature of social networks has
been shown to be important in problems such as searcha-
bility [26] and epidemics [27].

Here, we study an opinion formation dynamics based
on a majority rule [10-12] on the social network. Each
node can be in one of two possible states represented by
+1 and —1. Initially, a fraction p of nodes take on +1
and (1 — p) take on —1. These states, for example, repre-
sent two opposite opinions. Following the model studied
by Redner and co-workers [11,12], the states of the nodes
evolve in time according to the following updating rules.
At each time step, one node is chosen randomly. The cho-
sen node and his connected neighbors are then considered
collectively for updating. All the nodes in the cluster of
nodes will then be updated to take on the state of the local
majority. The updating rule thus represents a consensus
within the cluster by taking the majority opinion. The
procedure is then repeated until all the nodes take on the
same state, i.e., when a final state of consensus is reached
in the whole system. Obviously, one could rephrase the
problem and the dynamics in terms of up (4+1) and down
(—1) spins as in magnetic systems. This model of opinion
formation has previously been studied on regular lattices
and lattices that exhibit small-world properties [13]. The
social network studied here has the advantage of reflecting
the layer-by-layer grouping in many real-life networks in-
volving people, and thus it is uniquely suitable for study-
ing the dynamics of opinion formation. The interesting
question is how the structure of the network affects the
exit probability and consensus time.

For H = 1 and large values of a, the network consists of
locally connected groups that are isolated from each other
and thus the network is not connected. For H > 1, there
are a few links that connect the groups even for large a.
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Fig. 2. The averaged length of shortest paths ¢ as a function of
a in hierarchical networks with H =2, L =8, b= 2, (g) = 10
and (k) = 9. For each value of a, the result is obtained by
averaging over 100 different realizations of the network.

We have checked numerically that for H = 2 and for a
large range of a, the resulting network is connected, i.e.,
no isolated groups. For studying opinion formation, it is
important to have a connected network. In what follows,
we use the parameters H =2, b=2, (g) =10, L =8 in
constructing the hierarchical network. The mean degree is
taken to be (k) = 9. A network property that has previ-
ously been found to be important in the opinion formation
dynamics is the averaged length of shortest paths between
any two nodes [13]. It is thus useful for the discussions be-
low to show the length of shortest path ¢ as function of a
in the networks to be studied (see Fig. 2). Several features
should be noted. At large a, ¢ is longer as the network is
characterized by groups of nodes connected by a few links
of short social distance, and the network is kept connected
for H > 1 for the reason that a node will belong to a group
of different neighbors in different hierarchies. For large a,
the shortest path is basically determined by the initial
distribution of the nodes into the lowest level in each hi-
erarchy, and thus ¢ does not change much for a > 5. For
0 < a <4, ¢ drops as a decreases. It is because a smaller
positive value of a allows the establishment of links be-
tween nodes with a longer social distance in a hierarchy,
and these links provide short-cuts to get from one node
to another. The network has more links between groups
of nodes. For a < —1, £ becomes small and saturated. For
large b and (g), it is expected that the random network
limit is reached at @ = —Inb. Note that the diameter of
a random network is approximately log N/ log(k) ~ 3.257
and the shortest path of a random network is close to
its diameter [28-30]. The saturated value at negative a
is quite close to this estimated value and the discrepancy
comes from the small values of b and (g) used. Note also
that the difference in ¢ for large and small values of a is
about 0.5, which is small. The length of shortest paths is
more sensitive to other parameters, such as the number
of levels L and mean group size (g), as these parameters
control the number of nodes N in the system.
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Fig. 3. (a) The exit probability E(p) as a function of the ini-
tial density p of +1 opinion in three hierarchical networks with
L =29, 7, 4in each hierarchy. The other parameters are H = 2,
b=2,(g) =10, (k) =9 and a = 1. (b) The exit probability
E(p) as a function of p in three hierarchical networks with
L = 8 and three different values of a = 8, 1, —2. The other pa-
rameters are the same as in (a). For each value of p, the data
points represents an average over 40 different network configu-
rations and for each configuration over 50 different realizations
of initial opinion.

3 Dynamics of opinion formation in social
network

The fundamental quantities in studying opinion forma-
tion are the exit probability and the time to reach consen-
sus [11-13]. The exit probability E(p) is the probability
that a system ends up with all the nodes taking on +1,
given an initial fraction p of nodes taking on +1. Figure 3a
shows E(p) as a function of p for different values of L in
hierarchical networks with H = 2, b = 2, (g) = 10 and
a = 1. Note that a larger value of L corresponds to a
larger number of nodes N in the system. As L increases,
E(p) approaches a step function at p = 0.5. It is reason-
able in that a larger system tends to suppress fluctuations,
and the initial bias predetermines the final consensus. This
behavior is similar to that observed in regular lattices [11].
In terms of the length of shortest paths, an estimate based
on the random network limit gives £ oc L. As £ increases,
the occurrence of a state that is different from the ma-
jority in the initial bias becomes increasingly improbable
as nodes of minority opinion have to persuade groups of
majority opinion many times.

Figure 3b shows the exit probability F(p) as a func-
tion of the initial fractions p of +1 nodes for systems with
three different values of a and a fixed number of nodes.
The three values of a are chosen so that they correspond
to different regions in the behavior of ¢ (see Fig. 2). It is
noted that E(p) behaves almost identically for different
values of a, for systems with the same number of nodes
N. As remarked in the discussion in Figure 2, varying
a only changes the lengths of shortest paths by a small
amount (~0.5). Thus, E(p) shows nearly no dependence
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Fig. 4. The consensus time T as a function of the initial frac-
tion of +1 opinion in a hierarchical network with H = 2, L = 8,
b =2, (9) = 10 and (k) = 9. Results for four different values of
a =8, 1 —1 —4 are shown. Each data point represents an aver-
age over 40 different configurations and for each configuration
over 50 different initial opinion distributions.

on a, while changing L and thus N leads to more signifi-
cant changes in FE(p).

While different values of a give similar E(p), the time
to reach consensus or the consensus time 7' is a quantity
that is much more sensitive to the details of the network
structure and hence the parameter a. The consensus time
is expressed in units of Monte Carlo time step. In a Monte
Carlo time step, each node on average has undergone an
attempt on updating the state [13]. Figure 4 shows the
mean consensus time 7' as a function of the initial frac-
tion p of +1 opinion, for four different values of a. The
mean consensus time corresponds to taking averages over
different network configurations for the same network pa-
rameters and over different realizations of initial distribu-
tions of opinions for a given network configuration. The
other parameters are chosen to be the same as those in
Figure 2. Results of a = 8, 1, —1, and —4 are presented
in Figure 4. From Figure 2, the length of shortest-paths
drops as a decreases from ¢ = 8 to a ~ 0, and ¢ for
a = —1 and a = —4 are almost the same. From Figure 4,
the consensus time T'(p) does depend on the parameter of
homophyly a, even for systems with the same number of
nodes. The change in T'(p) depends on the initial bias —
an effect that is closely related to the network structure.
In the vicinity of unbiased initial opinion p ~ 0.5, T'(p)
becomes shorter as a (and thus ¢) drops. For appreciable
bias (p > 0.6 and p < 0.4), T'(p) becomes longer. For the
two sets of results corresponding to ¢ = —1 and a = —4,
which have the same ¢, T'(p) are nearly identical. These
results indicate that the detail structure of the network as
represented by £ and the initial bias are decisive factors
for the dynamics of opinion formation. Previous results in
networks constructed by randomly adding links to an un-
derlying square lattice [13] show a similar behavior, but
the feature is more apparent in the social networks stud-
ied here.

To examine the origin of the different behavior of T'(p)
for the cases of unbiased and biased initial opinion, we
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Fig. 5. The consensus time T" as a function of the parameter
of homophyly a for the case of (a) unbiased initial opinion
p = 0.5, and (b) biased initial opinion p = 0.3, in a hierarchical
network. The parameters in constructing the network are the
same as that in Figure 2. Each data point is an average 40
different network configurations and for each configuration over
50 different realization of initial opinion distributions.

show T'(p) as a function of the parameter of homophyly a
for p = 0.5 and p = 0.3 in Figure 5. While the results are
noisy, the dependence of T'(p) on a is qualitatively different
at these two p-values. We have checked that the behavior
in Figure 5a is typical of p ~ 0.5, and that in Figure 5b is
typical of p > 0.6 and p < 0.4. For unbiased initial opin-
ion (p=0.5), T(p = 0.5) changes with a in the same way
as the length of the shortest paths (compare Fig. 5a with
Fig. 2). For biased initial opinion distribution (p = 0.3),
T is longer for negative values of a and drops rapidly be-
tween 0 < a < 1, and then rises slightly before saturating
at large positive values of a. A clear indication that the
network structure is important in opinion dynamics is that
T changes most sensitively around a ~ 0 for different val-
ues of p. We note that a = —Inb = —0.693 is where links
between any pair of nodes are equally probable. However,
the opposite trends of T versus a for p = 0.5 and p = 0.3
indicate that the initial bias is also a key ingredient in the
dynamics of reaching a consensus.

The intricate interplay between network structure and
initial bias as shown in Figures 5a and 5b can be under-
stood qualitatively as follows. For H > 1, we have con-
nected networks. For unbiased initial opinion (p = 0.5), in
the early stage of negotiation and persuasion, groups ne-
gotiating for a local consensus have nearly as many nodes
of +1 opinion as —1 opinion. As a result of the major-
ity rule, clusters of +1 opinion and —1 opinion will be
formed and the numbers of these clusters are about the
same. For networks with a < 0, the structure is similar to
a random network. This structure promotes a good mix
of the nodes and thus has the advantageous of allowing
these clusters of opposite opinions to meet readily. This
provides a faster process in getting into a state of uniform
opinion and results in a shorter 7. As a becomes positive,
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the nodes tend to form groups with some links between
the groups. With the change in network structure, it is
more likely that negotiations first lead to local consensus
for the groups, and then these groups try to influence each
other. For p = 0.5, the local consensus within a group can
either by +1 or —1 with equal probabilities. A global con-
sensus, for which the consensus time refers to, can only
be reached through the small number of links between the
groups. As a increases, the nodes are connected in an in-
creasingly localized fashion, resulting in a smaller chance
for nodes in groups of different opinions to meet and thus
a longer consensus time.

For biased initial opinion (p = 0.3), the situation is
different. For networks with a < 0, the negotiation among
the nodes gives a longer consensus time compared with
the a > 0 case. It is because for small and positive a, the
hierarchical structure starts to emerge. The groups will
first arrive at a local opinion. Due to the initial bias, the
local opinion in the groups is highly likely to be the ini-
tially biased opinion. That is to say, the local opinions are
likely to be the same and the likelihood increases with the
bias. If this is the case, there is no need for the nodes in
different groups to meet and negotiate by making use of
the links connecting nodes in different groups. For a < 0,
the network is close to a random network. Although simi-
lar formation of local opinion of the same type also exists,
the structure of the network has more extended links and
thus a node may affect its neighbors in one step and its
neighbors may be influenced by their own neighbors in
another step. For a > 0, the links from a group to another
are rare. This is the reason for the drop in the consensus
time near a = 0. For strong initial bias, one would expect
that the consensus time for positive a near a =~ 0 is deter-
mined by the time to reach a consensus within a group.
For a given p # 0, there will be a chance, albeit small, of
having groups of different opinions at intermediate steps
and a consensus is finally reached by the links connecting
the nodes in different clusters. For a ~ 0, such links read-
ily exist and hence a consensus can be readily reached.
For larger and positive a, the links connecting different
groups only come from the multi-hierarchical structure of
the network which depends on the initial distribution of
the nodes among the lowest-level groups in each hierarchy.
The probabilistic nature of the dynamics implies that it
will take longer to pick the relevant nodes before a consen-
sus can be reached. This is reflected in the slight increase
in consensus time in the region of ¢ > 0 in Figure 5b.

The Watts’ network model [26] has the advantage that
it interpolates the limits of finely divided groups of nodes
with some links between them and random networks. The
results in Figures 4 and 5 illustrate the effects of chang-
ing the network structure. The network structure gives
different results for different initial biases. For finely di-
vided groups with a strong initial bias, each group will
reach the same local opinion and thus a global opinion is
automatically reached, without using the links. For unbi-
ased initial opinion, then the groups reach different local
opinions and it takes much time for the links to act as
mediators for reaching a global consensus.
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4 Summary

We studied the dynamics of opinion formation in social
hierarchical networks. The model gives a good representa-
tion of classifying or grouping of individuals in a popula-
tion. The opinion formation mechanism is based on a local
majority rule. The exit probability is found to change sen-
sitively with the number of nodes in the system, but not
with the parameter of homophyly. The consensus time,
however, is found to be a result of non-trivial interplay
between the detail of the network structure as character-
ized by the parameter of homophyly and the initial bias
in opinion. For unbiased initial opinion, a common con-
sensus is easier to be reached in a random network than a
highly structured hierarchical network. For biased initial
opinion, a common consensus is easier to be reached in
a hierarchical network, as the local majority opinions of
the groups may take on the biased opinion and hence be
the same.

The work was supported in part by a Grant from the Re-
search Grants Council of the Hong Kong SAR Government
under grant number CUHK-401005.
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